Skip to main content

Multiple Instances of 1 model

Load balance multiple instances of the same model

The proxy will handle routing requests (using LiteLLM's Router). Set rpm in the config if you want maximize throughput

Quick Start - Load Balancing

Step 1 - Set deployments on config

Example config below. Here requests with model=gpt-3.5-turbo will be routed across multiple instances of azure/gpt-3.5-turbo

model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/<your-deployment-name>
api_base: <your-azure-endpoint>
api_key: <your-azure-api-key>
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: <your-azure-api-key>
rpm: 6
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-large
api_base: https://openai-france-1234.openai.azure.com/
api_key: <your-azure-api-key>
rpm: 1440

Step 2: Start Proxy with config

$ litellm --config /path/to/config.yaml

Step 3: Use proxy - Call a model group [Load Balancing]

Curl Command

curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'

Usage - Call a specific model deployment

If you want to call a specific model defined in the config.yaml, you can call the litellm_params: model

In this example it will call azure/gpt-turbo-small-ca. Defined in the config on Step 1

curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "azure/gpt-turbo-small-ca",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'

Router settings on config - routing_strategy, model_group_alias

litellm.Router() settings can be set under router_settings. You can set model_group_alias, routing_strategy, num_retries,timeout . See all Router supported params here

Example config with router_settings

model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/<your-deployment-name>
api_base: <your-azure-endpoint>
api_key: <your-azure-api-key>
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: <your-azure-api-key>
rpm: 6
router_settings:
model_group_alias: {"gpt-4": "gpt-3.5-turbo"} # all requests with `gpt-4` will be routed to models with `gpt-3.5-turbo`
routing_strategy: least-busy # Literal["simple-shuffle", "least-busy", "usage-based-routing", "latency-based-routing"]
num_retries: 2
timeout: 30 # 30 seconds